Phase relationships in the system Si_3N_4 - Y_2O_3 - SiO_2

R. R. WILLS Systems Research Laboratories, Inc., 2800 Indian Ripple Road, Dayton, Ohio, USA

S. HOLMQUIST* Universal Technology Corporation, 1656 Mardon Drive, Dayton, Ohio, USA

J. M. WIMMER, J. A. CUNNINGHAM Air Force Materials Laboratory, Wright Patterson Air Force Base, Ohio, USA

Examination of compositions in the system Si₃ N₄ – Y₂O₃ – SiO₂ using sintered samples revealed the existence of two regions of melting and three silicon yttrium oxynitride phases. The regions of melting occur at ~1600° C at high SiO₂ concentrations (~13 mol % Si₃ N₄ + 19 mol % Y₂O₃ + 68 mol % SiO₂) and at 1650° C at high Y₂O₃ concentrations (25 mol % Si₃ N₄ + 75 mol % Y₂O₃). Two ternary phases 4Y₂O₃ ·SiO₂ ·Si₃ N₄ and 10Y₂O₃ ·SiO₂ ·Si₃ N₄ and one binary phase Si₃ N₄ ·Y₂O₃ were observed. The 4Y₂O₃ ·SiO₂ ·Si₃ N₄ phase has a monoclinic structure (*a* = 11.038 Å, *b* = 10.076 Å, *c* = 7.552 Å, β = 108° 40′) and appears to be isostructural with silicates of the wohlerite cuspidine series. The 10Y₂O₃ ·9SiO₂ ·Si₃ N₄ phase has a hexagonal unit cell (*a* = 7.598 Å *c* = 4.908 Å). Features of the Si₃ N₄ - Y₂O₃ –SiO₂ systems are discussed in terms of the role of Y₂O₃ in the hot-pressing of Si₃ N₄, and it is suggested that Y₂O₃ promotes a liquid-phase sintering process which incorporates dissolution and precipitation of Si₃ N₄ at the solid-liquid interface.

1. Introduction

Hot-pressed Si₃N₄ is one of the leading candidate materials for components in high-temperature gas turbines. High-strength and fully dense bodies are generally obtained by the addition of up to 5 wt % MgO to the α -Si₃N₄ starting powder [1]. The MgO promotes the formation of a liquid phase [2], which enables the material to be hot pressed to full density. However, the high-temperature strength of the material sharply decreases above 1000°C due to the presence of the glassy grainboundary phase formed by the reaction of the MgO additive with SiO₂ and metal impurities, both of which are associated with the α -Si₃N₄ powder [3, 4]. Improvements in high-temperature strength have recently been obtained either by increasing the vicosity of the grain-boundary phase as in the Norton Co NC132 (Norton Co, Worcester Mass. 01606, USA) grade Si₃N₄ or by achieving a more refractory grain-boundary phase. The latter approach has been adopted by Gazza [5,6] and by Mazdiyasni and Cooke [7] who investigated the effect of rare-earth oxide additions on the hotpressing of Si₃N₄. Gazza [5] found that the addition of 1 to 3.3 wt% Y2O3 yielded hotpressed bodies with a four-point bend strength of 400 MN m^{-2} (58 000 psi) to 476 MN m^{-2} (69 000 psi) at 1315°C. However, the highest strengths are obtained only with Y2O3 concentrations greater than 10 wt %. Torti [8] has reported three-point bend strengths of 743 MN m^{-2} (107 000 psi) at 1375° C for Si₃N₄ with $13 \text{ wt}\% \text{ Y}_2\text{O}_3$ and 733 $MN m^{-2}$ (106 000 psi) for 16 wt % Y₂O₃.

It has been shown that when Y_2O_3 is used as

© 1976 Chapman and Hall Ltd. Printed in Great Britain.

^{*} Visiting Research Associate at Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, under Contract No. F33615-73-C-4155 when this work was carried out.

the hot-pressing additive, the high-temperature properties are controlled by a refractory grainboundary phase of composition $Si_3N_4 \cdot Y_2O_3$ [9,10], and it has been suggested [9] that densification occurs by way of a transient siliconyttrium-oxynitride melt, during the hot-pressing cycle. However, the possible role of the surface SiO_2 on the Si_3N_4 powder was not considered in this explanation. The present investigation was thus directed toward determining the main features of the $Si_3N_4 - Y_2O_3 - SiO_2$ system in an effort to understand the densification of Si_3N_4 .

2. Experimental

The main features of the system were established using 3 g discs, $\frac{3}{4}$ in. diameter, made by the cold compaction of Si₃N₄ (Advanced Materials Engineering Ltd, Gateshead, UK), Y2O3 (Kerr McGee Chemical Corp., Oklahoma City, Oklahoma) and SiO₂ (Atomergic Chemetals Co, Long Island, N.Y. 11514). The mean particle size of all powders was 2 to $6\mu m$. Larger samples (~20g) used primarily to obtain thermal-expansion data, were prepared by isostatic pressing at 140 MN m⁻² (20000 psi). The powders were mixed in propan-2-ol using a Waring blender. Samples were supported on a bed of BN powder during firing in a N₂ atmosphere at 1575 to 1750°C for 1h. Before the N₂ entered the resistance-heated alumina-tube furnace, it was passed through ascartite, magnesium perchlorate, and heated copper/copper oxide catalytic pellets to remove carbon dioxide, water, hydrocarbons, and oxygen. The weight loss for the smaller samples during firing was ~2%, whereas for the larger samples it was ~1%. The sintered discs were examined as powders using a recording X-ray diffractometer (CuK α). Standard metallographic and SEM techniques were employed to examine microstructural features.

3. Results and discussion

3.1. Phase relationships

The main features of the system are shown in Fig. 1. Solid-state equilibria at 1700° C were explored by establishing compatability triangles according to the "clear cross" principle [11,12] The yttrium silicate, $2Y_2O_3 \cdot 3SiO_2$ found in the Y_2O_3 -SiO₂ phase diagram by Toropov and Bondar [13] was not observed and consequently is not shown. There is no tie line between Si₃N₄.

 Y_2O_3 and Y_2O_3 and, therefore, it is likely that a tie line exists between the ternary phase $4Y_2O_3 \cdot$ $SiO_2 \cdot Si_3N_4$ and a YN-rich phase. YN along with Si_3N_4 , SiO_2 , and Y_2O_3 , constitutes one plane in the tetrahedron Si-Y-O-N.

3.2. Melting

In the triangle $\text{SiO}_2 - \text{Y}_2\text{O}_3 \cdot 2\text{SiO}_2 - \text{Si}_2\text{N}_2\text{O}$, several samples exhibited bloating. The minimum temperature at which this was observed was ~1600°C in the region of composition 13 mol% $\text{Si}_3\text{N}_4 + 19 \text{ mol}\% \text{Y}_2\text{O}_3 + 68 \text{ mol}\% \text{SiO}_2$. Along the $\text{Y}_2\text{O}_3 - \text{SiO}_2$ binary, the lowest liquidus temperature is 1660°C at 72 mol% $\text{SiO}_2 + 28 \text{ mol}\% \text{Y}_2\text{O}_3$ [13]. It would thus appear that Si_3N_4 dissolves in this liquid and lowers the liquidus temperature. In the lower part of the diagram, melting was observed at 1650°C in the region of composition 25 mol% $\text{Si}_3\text{N}_4 + 75 \text{ m}\% \text{Y}_2\text{O}_3$.

TABLE I Observed and calculated diffraction data for $Si_3\,N_4\,\boldsymbol{\cdot}\,Y_2\,O_3$

hkl	d (A)	Relative intensity	Q_{obs}	Q_{calc}
110	5,400	8	0.0343	0.0346
001	4.951	11	0.0408	0.0415
200	3.830	7	0.0682	0.0693
111	3.644	15	0.0753	0.0762
120	3.411	9	0.0859	0.0866
201	3.015	25	0.1100	0.1108
121	2.794	100	0.1281	0.1281
220	2.696	5	0.1376	0.1386
002	2.459	9	0.1654	0.1660
130	2.408	17	0.1724	0.1732
221	2.359	4	0.1797	0.1801
102	2.336	3	0.1832	0.1833
301	2.252	3	0.1978	0.1974
112	2.230	3	0.2011	0.2006
131	2.159	4	0.2145	0.2147
202	2.065	3	0.2345	0.2353
122	1.991	19	0.2523	0.2526
400	1.897	8	0.2779	0.2772
410	1.843	7	0.2944	0.2945
222	1.812	12	0.3046	0.3046
330	1.792	10	0.3114	0.3118
411	1.726	12	0.3357	0.3359
312	1.717	17	0.3392	0.3392
420	1.699	5	0.3464	0.3464
331	1.682	9	0.3535	0.3533
213	1.474	12	0.4603	0.4602
332	1.449	5	0.4763	0.4778
521	1.359	9	0.5414	0.5438

Tetragonal a = 7.598 Å, c = 4.908 Å

Figure 1 The system $Si_3N_4 - Y_2O_3 - SiO_2$ showing solid-solid equilibria at 1700° C.

3.3. Phase identification

The diffraction patterns for three recently reported [9,10] silicon-yttrium-oxynitride phases were confirmed and established in more detail. Microstructural analysis of the sintered discs suggested that the probable compositions of these phases were $Si_3N_4 \cdot Y_2O_3$, $Si_3N_4 \cdot 3Y_2O_3$, and $10Y_2O_3 \cdot 9SiO_2 \cdot Si_3N_4$. The exact composition of the second oxynitride was difficult to establish, but since electron microprobe analysis gave the Y/Si ratio as 2:1, Si₃N₄ · 3Y₂O₃ was considered to be the probable composition. After indexing of the diffraction pattern, the correct composition of this phase is considered to be $4Y_2O_3$. $SiO_2 \boldsymbol{\cdot} Si_3N_4$ or $Y_4Si_2O_7N_2.$ Thus, the Si_3N_4 $-Y_2O_3$ -SiO₂ system contains two ternary phases and four binary phases.

The powder pattern of the binary compound $Si_3N_4 \cdot Y_2O_3$ can be indexed on the basis of a tetragonal cell (Table I). The lattice parameters a = 7.598 Å, c = 4.908 Å agree closely with those found by Tsuge *et al.* [15] (a = 7.603 Å, c = 4.910 Å) and by Rae *et al.* [10] (a = 7.597 Å, c = 4.908 Å). The latter group has shown that

 $Si_3N_4 \cdot Y_2O_3$ is isostructural with the melilite silicates; Akermanite $Ca_2MgSi_2O_7$ and Gehlenite $Ca_2Al(SiAIO_7)$ and have stated that the oxynitride has a complete range of solid solubility with both silicates.

The powder pattern of the ternary phase $10Y_2O_3 \cdot 9SiO_2 \cdot Si_3N_4$ was indexed on the basis of a hexagonal unit cell having lattice parameters a = 9.436 Å, c = 6.822 Å. Table II gives the the diffraction lines and illustrates the good agreement between the calculated and observed Q values ($Q = 4 \sin^2 \theta / \lambda^2$). This compound corresponds to the H phase of Rae *et al.* [10]; Thompson [15] has suggested that it is isostructural with fluoroapatite Ca₅(PO₄)₃ F (hexagonal a = 9.368 Å c = 6.881 Å), and thus may be represented by the formula Y₅(SiO₄)₃ N. This oxynitride was found to be stable up to ~1750°C in a N₂ atmosphere whereupon it slowly dissociated to Y₂O₃ and Y₂O₃ • SiO₂.

The second ternary phase, $4Y_2 SiO_2 \cdot Si_3 N_4$, was determined to have a monoclinic unit cell with lattice parameters a = 11.038 Å, b = 10.076 Å, c = 7.552 Å, $\beta = 108^{\circ}46'$. The *d* spacings and

TABLE II Observed and calculated diffraction data for $10Y_2O_3 \cdot 9SiO_2 \cdot Si_3N_4$

ТАВ	LE II	I (Observed	and	calculated	diffraction	data	for
4Y ₂ (D₃ • Si@	O_2	∘Si₃N₄					

hkl	d (Å)	Relative intensity	$Q_{\rm obs}$	Q_{calc}	hkl	d (Å)	Relative intensity	$Q_{\rm obs}$	Q calc
110	4.741	4	0.0445	0.0445	110	7.248	12	0.0190	0.0190
200	4.101	26	0.0595	0.0599	020	5.034	2	0.0395	0.0394
111	3.896	10	0.0659	0.0664	120	4.525	15	0.0488	0.0485
002	3.411	15	0.0859	0.0859	220	3.644	5	0.0753	0.0759
102	3.145	36	0.1011	0.1009	130	3.195	22	0.0980	0.0978
210	3.086	35	0.1050	0.1048	131	3.055	100	0.1071	0.1088
211	2.811	100	0.1265	0.1263	022	2.919	15	0.1174	0.1174
112	2.760	65	0.1312	0.1308	320	2.864	31	0.1219	0.1215
300	2.724	41	0.1347	Q 1347	230	2.828	54	0.1250	0.1251
202	2.615	10	0.1462	0.1458	401	2.736	7	0.1336	0.1317
301	2.526	2	0.1567	0.1562	311	2.712	7	0.1360	0.1368
220	2.353	1	0.1806	0.1796	400	2.619	8	0.1458	0.1459
212	2.284	4	0.1917	0.1907	040	2.519	16	0.1576	0.1576
310	2.262	7	0.1954	0.1946	$203(\bar{2}31)$	2.499	11	0.1601	0.1612 (0.1615)
221	2.225	6	0.2019	0.2011	321,412	2.453	6	0.1662	0.1662
311	2.143	3	0.2177	0.2161	313	2.284	6	0.1917	0.1913
302	2.122	7	0.2220	0.2207	240	2.273	5	0.1936	0.1941
400	2.038	12	0.2407	0.2396	331	2.149	4	0.2165	0.2156
203	1.983	2	0.2543	0.2533	340	2.042	10	0.2398	0.2397
222	1.933	40	0.2676	0.2656	521	2.029	7	0.2429	0.2447
312	1.880	17	0.2829	0.2806	322	1.979	15	0.2553	0.2501
320	1.868	6	0.2865	0.2845	250	1.890	15	0.2799	0.2827
213	1.824	41	0.3005	0.2939	341	1.875	7	0.2844	0.2845
321	1.802	18	0.3079	0.3059	242 (602)	1.815	14	0.3056	0.3058 (0.3050)
410	1.776	27	0.3170	0.3144	611	1.805	14	0.3069	0.3071
402	1.746	25	0.3280	0.3255	$\bar{2}51$	1.773	5	0.3181	0.3191
004	1.698	16	0.3468	0.3438	351	1.760	6	0.3228	0.3225
Desser	ral = 0.4	268 - 6903	8		600,350	1.749	6	0.3269	0.3284
пехадо	a = 9.4	50A, c = 0.822	A		610	1.717	14	0.3392	0.3382

 $\bar{6}01$

034

611

261

361

360

 $\beta = 108.46^{\circ}$

observed and calculated Q values are given in Table III. Rae *et al.* [10], called this phase the J phase. Comparison of the lattice parameters of this phase with those of the silicates suggests that this phase is probably isostructural with the silicates of the wohlerite-cuspidine series. Cuspidine (Ca₄Si₂O₇F₂) has the lattice parameters a = 10.35 Å, b = 10.43 Å, c = 7.55 Å, $\beta = 110^{\circ}$ 4'. The composition of this phase may, therefore, be represented by the formula Y₄Si₂O₇N₂. In contrast to Y₅(SiO₄)₃N, Y₄Si₂O₇N₂ appeared to be stable at 1750° C under the same atmosphere.

3.4. Thermal expansion of the silicon yttrium oxynitrides

The linear coefficients of thermal expansion of these compounds as determined by a dilatometric technique are high relative to Si_3N_4 (see Table IV) which suggests that the presence of one or more of these phases in hot-pressed Si_3N_4 could influence its thermal and mechanical properties.

TABLE IV Thermal expansion of the silicon yttrium oxynitrides

Monoclinic a = 11.038 Å; b = 10.076 Å; c = 7.552 Å;

0.3966 0.3985

0.4026 0.4004

0.4088 0.4084

0.4266 0.4275

0.4294 0.4308

0.4345 0.4337

1.588 5

1.576 11

1.564 8

1.531 6

1.526 5

1.517

5

Compound	Linear expansion coefficient (20 to 1000° C)				
$\overline{Si_3 N_4 \cdot Y_2 O_3}$	5.8 × 10 ⁻⁶ ° C ⁻¹				
$4Y_2O_3 \cdot SiO_2 \cdot Si_3N_4$ $10Y_2O_3 \circ 9SiO_2 \cdot Si_3N_4$	$6.6 \times 10^{-6} ^{\circ} \mathrm{C}^{-1}$ $8.2 \times 10^{-6} ^{\circ} \mathrm{C}^{-1}$				

3.5. Role of Y_2O_3 and SiO_2 in the hotpressing of Si_3N_4

The probable explanation of the role of the Y_2O_3 additive in the hot-pressing of Si_3N_4 is that the initial reaction below 1600° C results in the formation of a SiO_2 -rich Si_3N_4 -SiO $_2$ -Y $_2O_3$ liquid at the grain boundaries which acts as an initial densification aid. Since the availability of SiO₂ is limited, further reaction results in the formation of a liquid of approximate composition 25 mol% Si₃N₄ + 75 mol% Y₂O₃ at ~1650°C, and this melt is probably the principal liquid phase present during the hot-pressing cycle, enabling the Si₃N₄ to be pressed to low porosity levels. During this stage of the process, the interaction of the melt with the Si₃N₄ grains produces the final grain-boundary oxynitride phase, Si₃N₄ • Y₂O₃. Incomplete reaction can be readily detected by the appearance of the phase $4Y_2O_3$ · Si₃N₄ • SiO₂ in the final product which precipitates out of the melt during cooling (see Fig. 1).

The high-temperature strength of the resulting ceramic bodies is due to the presence of $Si_3N_4 \cdot Y_2O_3$ as the grain-boundary phase. Tsuge *et al.* [14], have estimated that it does not become liquid until ~1830°C. Furthermore, this phase has the ability to dissolve small amounts of SiO₂ and appreciable amounts of metal impurities [10] which might otherwise form low-softening-point glassy phases. Optimum Y_2O_3 additions (>10 w%) are thus associated with promoting the formation of this phase.

The role of metal impurities has not been fully established, but it is likely that they affect the liquid phases that form during the pressing cycle and, hence, influence the ultimate porosity levels and strength of the ceramic body. For example, Huseby and Petzow [16] examined the influence of 17 additives including Y2O3 on hot-pressed Si_3N_4 and found that complete densification could be achieved with only one of the two α -Si₃N₄ powders used. Furthermore, Norton Co Y2O3-based Si3N4 HX415 contains WSi2 resulting from the reaction of WC (from the ball billing) with Si₃N₄. A complete understanding of the densification and mechanical properties of hot-pressed Si_3N_4 produced using Y_2O_3 as the densifying additive cannot, therefore, be achieved until the effect of metal impurities is known. However, the liquid-phase sintering, dissolution of Si_3N_4 , and precipitation of solid material observed in the $Si_3N_4 - Y_2O_3 - SiO_2$ system strongly suggest that Y₂O₃ acts in a manner

similar to MgO [2] and Al₂O₃ [17] in the hotpressing of Si₃N₄ in facilitating liquid-phase densification and a solid-liquid-solid $\alpha \rightarrow \beta$. transformation mechanism.

Acknowledgement

This work was supported in part under USAF Contract F33615-75-C-1005.

References

- 1. G. C. DEELEY, J. M. HERBERT and N. C. MOORE, Powder Met. 8 (1961) 145.
- P. DREW and M. H. LEWIS, J. Mater. Sci. 9 (1974) 261.
- 3. D. W. RICHERSON, Amer. Ceram. Soc. Bull. 52 (1973) 560:
- F. F. LANGE and J. L. ISKOE, "Proceedings of the Second Army Materials Technology Conference: Ceramics for High Performance Applications," (Brook Hill, Chestnut Hill, Massachusetts, 1974) p. 223.
- 5. G. E. GAZZA, J. Amer. Ceram. Soc. 56 (1973) 602.
- G. E. GAZZA, D. R. MESSIER and P. WONG, "Recent Developments in Processing Si₃N₄," presented at the Third Materials Conference on Turbine Applications, Ann Arbor, Michigan, 30 October to 1 November, 1974.
- 7. K. S. MAZDIYASNI and C. M. COOKE, J. Amer. Ceram. Soc. 57 (1974) 536.
- 8. M. L. TORTI, "The Effects of Fabrication Procedures Upon Mechanical Properties of Si_3N_4 and SiC Turbine Components," presented at the Third Materials Conference on Turbine Applications, Ann Arbor, Michigan, 30 October to 1 November, 1974.
- 9. R. R. WILLS, J. Amer. Ceram. Soc. 57 (1974) 459.
- 10. A. W. J. M. RAE, D. P. THOMPSON, N. J. PIPKIN and K. H. JACK, Special Ceramics 6 (1975) 347.
- F. N. RHINES, "Phase Diagrams in Metallurgy" (McGraw Hill, New York, 1956) p. 203.
- 12. W. R. FOSTER, Bull. Amer. Ceram. Soc. 30 (1951) 267, 291.
- N. A. TOROPOV and I. A. BONDAR, *Izv. Akad.* Nauk, SSR, Otd. Khim. Nauk 4 (1961) 544, 1372.
- 14. A. TSUGE, H. KUDO and K. KOMEYA, J. Amer. Ceram. Soc. 57 (1974) 269.
- 15. D. P. THOMPSON, Special Ceramics 6 (1975) 358.
- 16. I. C. HUSEBY and C. PETZOV, Powder Met. Int. 1 (1974) 17.
- 17. P. DREW and M. H. LEWIS, J. Mater. Sci. 9 (1974) 1833.

Received 8 October and accepted 17 November 1975.